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A computational algorithm is described, based on the total approximation method. 
The discussion is centered on the example of the model problem of laser break- 
down of high-pressure atomic nitrogen near a metallic surface. 

A whole range of processes, referring to various fields of study, such as breakdown in 
gases, the etching problem in lithography, effects in the ionosphere [1-6], and others, can 
be described during mathematical simulation by means of the system of equations 

Ov 
o--F+Lv=f~x," t, v). (1) 

Here L is a differential operator (acting on v(x, t) as a function of x), describing several 
spatially inhomogeneous processes: gasdynamic motion, diffusion, or heat conduction as a func- 
tion of the type of problem; and the functions f(x, t, v) describe processes of nonequilib- 
rium kinetics, usually related to particle generation and recombination in various physico- 
chemical reactions. 

In the present study we use the example of a model problem of low-threshold breakdown 
of atomic nitrogen by laser irradiation to propose an approach to the solution of the system 
of equations (i), based on using the total approximation method [7]. In this case the solu- 
tion of the system of equations (i) is decomposed into two phases: 

dv =f(x ,  t, v), (2) 
dt 

a_/_v + Lv = 0, (3) 
at 

in each of which one uses numerical methods, allowing effective solution of the system of 
equations (2) and (3). The specific shape of the suggested computational algorithm will be 
demonstrated on the example of the problem considered below. 

I. Statement of the Problem. CO 2 laser radiation (he0 = 0.117 eV, Go = 107 W'cm -2) is 
incident from the right on a metallic film (molybdenum), surrounded by dense atomic nitrogen 
(P = 100 atm, N = 2.5"102: cm-~). The cold gas is transparent to radiation, and the flux 
passes through it to the target surface; in this case part of it is absorbed, and part is re- 
flected in the opposite direction. The surface is heated and starts emitting electrons into 
the gas, with the electrons then gathering energy as a result of retarding absorption in the 
field of ions and neutral atoms. 

Nitrogen is considered as a two-level monatomic gas, r which can be found in one of three 
states: ground, excited, and singly ionized state. Each of the states is characterized by 

*The given statement of the model problem does not take into account the molecular structure 
of nitrogen. However, in the authors' opinion the use of this statement in the given study 
is justified for two reasons. Firstly, as shown for the case of nitrogen breakdown by emis- 
Sion of a neodymium laser [8], account of the molecular structure provides only a quantita- 
tive variation, without changing the qualitative nature of the process flows. Secondly, the 
shape of the gas structure used is nowhere reflected in the computational algorithm. There- 
fore, its description is naturally carried out on the simplest case example of atomic nitro- 
gen. 
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the level population. The following elementary processes are taken into account by means of 
the rate coefficients of the corresponding reactions: excitation and de-excitation of an 
atom, ionization by electron impact from the ground and excited state, and three-particle re- 
combination. The electron temperature inthe emission zone is caused by elastic, inelastic, 
and superelastic collisions with heavy particles; the electron thermal conductivity is also 
taken into account. Since energy exchange between the electron gas and heavy particles is 
rendered difficult, the problem is considered in the two-temperature approximation. 

The processes occurring in the emission band are characterized by strong spatial inhomo- 
geneity, therefore an important role is played by ion and electron diffusion, and the elec- 
tric currents due to uncompensated charge of thermoelectrons. In the mathematical model we 
also took into account intensity enhancement of laser radiation due to its partial reflec- 
tion from the surface and the decrease in flow intensity at the later breakdown phases, when 
screening of the target starts. The system of equations [which is a special case of system 
(i)], describing the kinetics of collisions, energy exchange, and the transport processes, 
is the following: 

dN __ (k+N - -  [J+N+Ne) Ne - -  (k*N - -  [~*N*) Ne, ( 4 )  
dt 

dN* -- (k*N - -  [~*N*) N~ - -  (k*§ - -  [j+N+N~) Ne, 
at (5) 

0 ON~ot -- (le+N --  ~+N+N~) Ne + (k*+N* --  ~+N+N*) Ne + -~x 

3 N~ OTe 
2 Ot 

3 T~)(k*N--~*N*)Ne 3T~) --~--(I*+-- i --(I++ 

(_~_) 0 ( ede N Ou) (7) 
De ----~x ~ T~ e'-~--x ' 

(k+N-- ~+N+N~) N~-- (,*+ + ~ Te) (k*+N*-- 

__ ~+N+N~ ) Ne 3me (T~-- T~) vN~ --( 0 (~ O T  e ~ ,  

m~ -TUx \ Ox ] (g) 

3 N dTe 3rn~ (T e _ Tg) vNe; ( 9 )  
T ~ d--i--= .~--/ 

d2u 
--  4ae (N e - -  N+). ( 10 ) dx 2 

Expression (4) is a balance equation for ground-state level populations, and Eqs. (5)-(9) are 
the balance equations for the excited level, for ions, for electrons, the energies for elec- 
trons and for heavy particles, respectively, while expression (i0) is the one-dimensional 
Poisson equation. 

The values of coefficients and constants appearing as parameters in the equations of 
system (4)-(10) were used in the same way as in the numerical simulation of low-threshold 
breakdown by neodymium laser radiation [i, 2, 8]. For the absorption coefficient ~, we used 
the expression for a monochromatic plane wave propagating in a weakly ionized gas: 

4~e2~Ne 

l l x 

G = G o [ e x p ( - - f  . d x ) + ( l - - A ) e x p ( - - ~ d x - -  f ~dx)], A=0,2. 
x ~ 0 

The classical approximation is valid for C02-1aser [9], since its energy quantum (h~ = 0.117 
eV) is smaller by orders of magnitude than electron temperatures characteristic of laser 
breakdown. It must be noted that the absorption coefficient value of molybdenum A for a CO 2- 
laser is strongly enhanced. 
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The boundary conditions for the equations 

aN+ a(D+ON+ ) 
o - - 7 -  = o--7- ; 

0Ne_ 0 (DeaNe). 
at - a x  ax )'  

3 Ne aTe a ( ate  _ I, d2u . . . .  \• ~ - -  = 4~e (No_ - -  N+) 
2 at ax ]" dx z 

( n )  

( lZ)  

were given in the form 

DeONe[ox x=0 = B T~exp ( - - - ~ o ) ' e  . N+lx__o=N+l~__z=Nel~=z=O; (13)  

Telx=o = To 2A . / -  ai 6 aTe [ 
= ~ V - - ~ -  I~=o; ax ix=l=~ ulx=o = ulx.=z = o (14)  

at the point x = 0 (on the surface) and at the point x = s located quite far to the right 
of the film (s = i cm). 

The Richardson equation [I0] was used to estimate the thermoelectron current from a sin- 
gle target surface. The surface temperature was determined by solving the heat conduction 
problem for a semiinfinite body, acted upon by a constant intensity source. The boundary 
conditions for the Poisson equation were assigned with account of the fact that no external 
forces act on the system. A more detailed physical statement of the problem was described 
in [ii]. 

2. Computational A!gorithm. A difference grid was used, being nonuniform in space and 
in time. The value of the spatial step was assigned in the form of a geometric progression 
with quotient q (q = 1.22) 

r = {(x,, tj); x, = qi __ 1 l, 0 ~< i ~< M + 1 -= 50; t~+~ = tj + Tj, 
qM+l __ 1 

j_-0,,,2} 
In this case the coordinate of the first spatial point away from the surface is x z - 10 -5 cm. 
The value of the step in time Tj for each time layer was selected directly during the calcu- 
lation. 

A universal method for reducing the complex and awkward mathematical problem to a dif- 
ference scheme is the total approximation method [7], whose basic idea is that the process 
of searching an approximate solution consists of a succession of steps, in each of which a 
simpler problem is solved. In the given case, according to the total approximation method 
the system of equations (4)-(10) at each step in time ~j is represented in the form of two 
successively solvable systems similar to (2) and (3): 

dN 
- -  -- (k+N - -  ~+N+Ne) N e - -  (k*N - -  ~*N*) N e, 
at (15) 

dN* 
= (k*N - -  ~*N*) We - -  (k*+N* - -  ~+N+N,) We, 

Ne dTe 
2 dt 

dt 

dN + 

dt 

dNe 
dt 

= (k+N - -  ~+N+Ne) N o + (k*+N * - -  ~+N+Ne) Ne, 

= (k+N - -  ~+N+Ne) Ne + (k*+N * - -  ~+N+Ne) Ne. 

3me (T __ T~),Ne__ [ ( I ,  + 3 Te) ( k , N _ _ , , N , )  + 
mg 

3 T~) (k+N--~+N+N~)-}- ( I*+-}- -~ T,) (k*+N*--[~+N+N,) ] Ne, +('++ 2 

(16) 

(17) 

(is) 

(19) 

1156 



dTe 2me 
Ng - -  = - -  (Te - -  re)  vN,; (20)  

dt me 

0"-'7-- = Ox Ox Ox Tg Ox ' ( 21 )  

at = - a T  - - 2 Z  t re e--O-2  ) (22) 

3__ Ne Ore 0 ( Ore 
2 Ot Ox \ Ox / (23 )  

dZu 
dx ~ = 4ae (N~ - -  N+). (24 )  

The t r a n s i t i o n  f rom t i m e  l a y e r  j t o  ( j  + 1) i s  r e a l i z e d  in  such  a manner  t h a t  i n i t i a l l y  one 
s o l v e s  on t h e  s egm en t  [ t j ,  t j + z ]  t h e  s y s t e m  o f  k i n e t i c  e q u a t i o n s  ( 1 5 ) - ( 2 0 ) ,  and t h e n ,  u s i n g  
t h e  v a l u e s  o b t a i n e d  a s  i n i t i a l  d a t a  f o r  t h e  same s t e p  in  t i m e  one s o l v e s  t h e  s y s t e m  o f  d i f -  
f u s i o n  and h e a t - c o n d u c t i o n  e q u a t i o n s  ( 2 1 ) - ( 2 3 ) ,  s i n c e  t h e  e q u a t i o n s  o f  s y s t e m  ( 1 5 ) - ( 2 0 )  a r e  
independent of the explicit form of the electric potential u. 

The general difference scheme consists of a chain of two difference schemes. The basic 
meaning of applying the total approximation method in the form (15)-(20), (21)-(23) consists 
of the fact that at each of its phases, instead of a system of partial differential equations 
one obtains a system of ordinary differential equations (ODE), for whose solution one can use 
highly effective multistep numerical methods, including rigorously stable ones. At various 
spatial points the system of ODEs (15)-(20) was solved separately (independently). In this 
case the first stage of the total approximation method reduces to that at each point x i (be- 
sides the boundary points i = 0, i = M + I) one integrates the system of ODEs (15)-(20) from 
the point t = tj to the point t = tj+1, i.e., one solves for it on the segment [tj, tl+ l] 
the Cauchy problem, using as initial data the values obtained in solving the system o~ equa- 
tions (21)-(24). To integrate the ODE systems we used a standard program, realizing a numeri- 
cal method of the predictor-corrector type with automatic selection of the step and order of 
the method. Since this program selects the integration step, starting from assigning its 
accuracy, then in solving the system (15)-(20) at the segment [tj, tj+1] one carried out not 
one step in time, but several or even many. The number of these steps at various points x i 
was different, since the variation occurred substantially nonuniformly in space. Usually 
there were from 4-5 to 20-30 steps in time in the segment [tj, tj+1]. 

Thus, in solving the system (15)-(20), at each point x i we used its difference grid in 
time, being smaller than ~h~- A detailed approach is useful when nonequilibrium kinetic pro- 
cesses occur differently at various spatial points. The specifics of the program with auto- 
matic selection of the step and the order of the method consist of that the initial step is 
usually relatively small, and then, with further integration the step used usually increases 
substantially, sometimes by several orders. Since the application of multistep high-order 
approximation methods to the system of ODEs (15)-(20) allowed to integrate it with a crude 
step in time, in several cases it was suitable to strongly enhance the length of the segment 
It., t.+l], so that it exceeded step with which the system of equations (21)-(24) 
could ~e solved. Consequently, the time to enhance the effectiveness of the algorithm in several 
cases, and in solving the system of equations (21)-(24) on the segment [tj, tj+1] several 
steps in time (usually 5-10) were made. 

For the system of ODEs (15)-(20) to be solved at the time step [tj, tj+ l] corresponding 
to the point x i independently of other spatial points it is necessary to assume that 

O(x,, t) = const for  t j < t < t j + l .  (25)  

In the problem solved, due to the fact that the laser radiation flux varies weakly with time, 
it appeared possible to simply select it with the preceding layer: G(x i, t) = G(xi, tj) for 
tj < t < tj+ 1. 

The computational algorithm was suggested in [11]-[13]. It is an updated algorithm, 
used in [i, 2] for numerical solution of a system of equations similar to (i)-(7). In [i, 
2] the total approximation method was also used in the form of decomposing the original sys- 
tem into two subsystems, so as to decouple the system of inhomogeneous partial differential 
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Fig. i. Spatial profile of the electron temperature at the moment 
of time t = 2"i0 -z~ sec; x in cm, T e in eV. 

Fig. 2. Spatial concentration profiles at the moment of time t = 
2 psec. N*, N +, N e in cm -3. 

equations into a system of homogeneous partial differential equations and a system of ODEs. 
However, no assumptions similar to (25) were made in [i, 2], and the ODE system obtained was 
solved simultaneously at all spatial points, quite similarly to the way it was done in the 
direct method [4]. According to the method of [i, 2], the first phase of the total approxi- 
mation method consists of integrating on the segment [tj, tj+ l] one large system of ODEs con- 
taining 6M equations. We recall that in the present study the first phase of the total ap- 
proximation method was reduced to the necessity of solving on the segment [tj, tj+ z ] M ODE 
systems, each of which containingsix equations. Practice shows that the computational al- 
gorithm in its present form decreases by many times the required computer memory and computa- 
tional time of a single variant. 

Obviously, one can isolate two basic factors, capable of substantially reducing the com- 
putational time in the transition from simultaneous solution of the system (15)-(20) at all 
spatial points to its separate point-by-point solution. One of these factors is that the 
large system, combining the equations for all spatial points, can be more difficult than each 
of the small systems separately. This can occur, for example, if there exists a substantial 
spatial inhomogeneity of physical processes. The program integrating the ODE system selects 
by itself the time step, starting from its assigned accuracy. For single spatial points this 
step can be substantially smaller than for others. The use of the general (large) system of 
equations induces at all spatial points integration with one and the same time step, which 
at each given moment is limited by an "unpleasant" spatial point. 

Another factor is that for most algorithms of integrating ODE systems the number of 
arithmetic operations is proportional to the square of the number of equations (usually this 
is related to the necessity of inverting Jacobi matrices). For most ODE systems containing 
6M equations the number of arithmetic operations is of order (6M) 2. At the same time, if it is 
necessary to solve M systems of six equations each, the number of arithmetic operations is 
of order 62M. Due to the fact that the Jacobi matrix of the total system of equations con- 
tains a larger number of equations than the total number of elements in the small Jacobi ma- 
trices, in the separate solution of small systems one obtains a gain in computational time. 

3. Several Results of Numerical Calculations. The results of solving the model problem 
described above are shown in Figs. 1-4. In each of the figures are shown spatial profiles of 
the variables at various moments of time; in this case it is assumed that the laser radiation 
starts acting at t = 0. 

Directly following the laser action there starts rapid growth of the electron tempera- 
ture Te, and following time t ~ 2.10 -l~ sec it reaches a stationary value (Fig. i). The val- 
ue of the established electron temperature (T e = 0.98 eV for x ~ 3"10 -4 cm) is independent of 
the concentration N e and is mostly determined by the relation between the values of P and G, 
therefore in what follows, during the duration of the whole process the electron temperature 
is practically unchanged up to the origin of the screening surface. 

The metallic surface is heated relatively slowly, and to this is related the basic delay 
in the development of an electron avalanche. To the extent of growth of surface temperature 
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(To ~ AG0~), the thermoemission current from the metal to the gas medium (Fig. 2) starts 
being enhanced. The high pressure of nitrogen hinders electron drift at large distances 
from the film, and therefore their concentration at the surface increases. The contribution 
of ionization to increasing N e at this phase of the process is negligibly small (N e >> N+). 

As seen from the figure, the enhancement in electron concentration in the near-surface 
layer leads to noticeable growth in the number of excited atoms. This has a large value, 
since in the following a basic role is played by the mechanism of power-law ionization. To 
the extent of increased effect of ionization processes one observes a gradual approach of 
the ionic concentration to that of the electrons (Fig. 3). The equality N e ~ N + implies that 
thermoemission is not a large basic source of enhanced N e. This is also indicated by the 
variation in the electron concentration profile, i.e., by the appearance of a maximum in the 
region x ~ 5"10 -4 cm (Figs. 3, 4). Now the electrons, created in ionization acts in the gas 
volume, diffuse to the surface of the target. 

At the concluding phase of breakdown ionization prevails not only over thermoemission, 
but also over atomic excitation, while one observes a sharp increase in the rate of evolution 
of electron avalanche. As shown from Fig. 4, breakdown occurs in a very narrow region, prac- 
tically on the metallic surface. At moment of time t = 3.605 ~sec there occurs substantial 
screening of the target surface. This leads to lowering of the electron gas temperature T e. 
The energy of laser radiation absorbed in the breakdown zone reaches several percent of its 
total flux, therefore the process of primary breakdown of cold nitrogen can be assumed to be 
completed. In what follows the breakdown zone starts being shifted to the right, toward the 
laser emission. 

The intensely absorbing plasma layer formed near the surface quickly leads to its total 
screening, and thus leads to vanishing reflected flux of laser radiation. Therefore the elec- 
tron temperature Te, which was primarily determined by the sum of incident and reflected 
fluxes, is substantially diminished not only inside the absorbing zone, but also in the re- 
gion of the transparent gas. If the intensity G o is near the threshold, breakdown can be 
further damped. 

The maximum breakdown surface temperature reached in the breakdown process T o = 2290~ 
(for t = 3.6 psec) is less than even the melting temperature of molybdenum at atmospheric 
pressure: Tmelt = 2620~ This, obviously, justifies the model assumption concerning the 
absence of material evaporation near the target. 

In conclusion, it is noted once more that the algorithm suggested, based on the use of 
the total approximation method, is sufficiently general for modeling effects in which a sub- 
stantial role is played by nonequilibrium kinetic processes. Finally, depending on the spe- 
cific problem the numerical methods used for solving the system (2) and (3) may vary. How- 
ever, the use of the principle itself of partitioning the original problem, so that at one 
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of the phases of the total approximation method the system of partial differential equations 
is replaced by a system of ODEs, is effective for the solution of a wide class of problems. 

NOTATION 

N, N n, N +, N e, Ng, concentrations of nonexcited atoms, excited atoms, ions, electrons, 
and heavy particles; Te, Tg, temperatures of electrons and heavy particles; u, electric po- 
tential; t, time; x, spatial coordinate; I n, I +, I n+, excitation and ionization energies of 
atoms from the ground and excited states; k n, k +, k n+, rate coefficients of excitation and 
ionization; ~n, 6+, rate coefficients of deexcitation and recombination; ~, absorption coef- 
ficient of radiation; Vei, ~ea, frequencies of elastic electron collisions with ions and 
atoms; D +, D e , diffusion coefficients of ions and electrons; K, electron heat conduction co- 
efficient; Go, inlet power flux of laser radiation; G, actual power flux of radiation at the 
point x; e, me, mg, electron charge and mass, and atomic mass; B, thermoemission constant; 
~, work function; To, surface temperature; ~, a , thermal conductivity and thermal diffusivity 
coefficients of molybdenum; A, absorption coefficient of radiation by a plate; ~, frequency 
of laser radiation; c, velocity of light; ~, Planck constant; P, pressure of nitrogen; s 
length of the integration segment; ~hT, difference network; q, ratio of the geometric pro- 
gression; x i, t., t'+1, i-th site of the spatial network, and the j-th and (j + l)-th sites 3 3 
of the time network; ~j, j-th step in time; and M, number of internal sites of the spatial 
network. 
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